Osmoregulation of atrial myocytic ANP release: osmotransduction via cross-talk between L-type Ca2+ channel and SR Ca2+ release.
نویسندگان
چکیده
Hyperosmolality has been known to increase ANP release. However, its physiological role in the regulation of atrial myocytic ANP release and the mechanism by which hyperosmolality increases ANP release are to be defined. The purpose of the present study was to define these questions. Experiments were performed in perfused beating rabbit atria. Hyperosmolality increased atrial ANP release, cAMP efflux, and atrial dynamics in a concentration-dependent manner. The osmolality threshold for the increase in ANP release was as low as 10 mosmol/kgH2O (approximately 3%) above the basal levels (1.55 +/- 1.71, 17.19 +/- 3.11, 23.15 +/- 5.49, 54.04 +/- 11.98, and 62.00 +/- 13.48% for 10, 20, 30, 60, and 100 mM mannitol, respectively; all P < 0.01). Blockade of sarcolemmal L-type Ca2+ channel activity, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (-13.58 +/- 4.68% vs. 62.00 +/- 13.48%, P < 0.001) and cAMP efflux but not atrial dynamics. Blockade of the Ca2+ release from the sarcoplasmic reticulum, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (13.44 +/- 7.47% vs. 62.00 +/- 13.48%, P < 0.01) and dynamics but not cAMP efflux. Blockades of Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/Ca2+ exchanger had no effect on hyperosmolality-induced increase in ANP release. The present study suggests that hyperosmolality regulates atrial myocytic ANP release and that the mechanism by which hyperosmolality activates ANP release is closely related to the cross-talk between the sarcolemmal L-type Ca2+ channel activity and sarcoplasmic reticulum Ca2+ release, possibly inactivation of the L-type Ca2+ channels.
منابع مشابه
Protein kinase-dependent and Ca -independent cAMP inhibition of ANP release in beating rabbit atria
Cui, Xun, Jin Fu Wen, Jing Yu Jin, Wen Xie Xu, Sung Zoo Kim, Suhn Hee Kim, Ho Sub Lee, and Kyung Woo Cho. Protein kinase-dependent and Ca2 -independent cAMP inhibition of ANP release in beating rabbit atria. Am J Physiol Regulatory Integrative Comp Physiol 282: R1477–R1489, 2002; 10.1152/ajpregu.00316.2001.—Regulation of atrial release of atrial natriuretic peptide (ANP) is coupled to changes i...
متن کاملProtein kinase-dependent and Ca(2+)-independent cAMP inhibition of ANP release in beating rabbit atria.
Regulation of atrial release of atrial natriuretic peptide (ANP) is coupled to changes in atrial dynamics. However, the mechanism by which mechanical stretch controls myocytic ANP release must be defined. The purpose of this study was to define the mechanism by which cAMP controls myocytic ANP release in perfused, beating rabbit atria. The cAMP-elevating agents forskolin and 3-isobutyl-1-methyl...
متن کاملDistinct roles for L- and T-type Ca(2+) channels in regulation of atrial ANP release.
Atrial secretion of atrial natriuretic peptide (ANP) has been shown to be regulated by atrial workload. Although modulating factors for the secretion of ANP have been reported, the role for intracellular Ca(2+) on the secretion of ANP has been controversial. The purpose of the present study was to define roles for L- and T-type Ca(2+) channels in the regulation of ANP secretion in perfused beat...
متن کاملCellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload
Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in compar...
متن کاملAtrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes.
BACKGROUND Spontaneous Ca2+ release from the sarcoplasmic reticulum (SR) can generate afterdepolarizations, and these have the potential to initiate arrhythmias. Therefore, an association may exist between spontaneous SR Ca2+ release and initiation of atrial fibrillation (AF), but this has not yet been reported. METHODS AND RESULTS Spontaneous Ca2+ release from the SR, manifested as Ca2+ spar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 287 5 شماره
صفحات -
تاریخ انتشار 2004